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Abstract

A numerical method is presented to determine the temperature dependent thermal conductivity and heat capacity
from the temperature measured at boundaries in a medium. The undetermined thermophysical properties are
denoted as the unknown variables in a set of nonlinear equations, which are formulated from the measured

temperature and the calculated temperature at the medium's boundaries. Then, an iterative process is used to solve
the set of nonlinear equations. Two sensors are needed to measure the temperature in the medium. The results show
that the speed of convergence is considerably fast because the number of iterations to approach a satis®ed solution

is under seven times. The close agreement between the exact values and the estimated results is made to con®rm the
validity and accuracy of the proposed method. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The determination of the thermophysical properties

from the measured temperature pro®les is a coe�cient

inverse problem of heat conduction [1]. This is an im-
perative problem because the magnitude of the thermo-

physical properties has a signi®cant in¯uence on the
analysis of temperature distribution, heat ¯ow rate,

and thermal instability problems. In most of the practi-

cal engineering problems, thermophysical properties
are temperature dependent and lead the heat equation

to a nonlinear form. The determination of the tem-
perature dependent thermophysical properties is more

di�cult than that of the temperature independent ther-

mophysical properties such as constant type, temporal-

dependent type, or spatial-dependent type [2±6].

Alifanov and Mikhailov [7], Tervola [8], Scarpa et al.

[9], Huang et al. [10], Lam and Yeung [11], have pro-

posed methods to estimate the temperature dependent

thermal conductivity alone. However, only few works

have been done to estimate the temperature dependent

thermal conductivity and heat capacity simultaneously

[12±15]. The problem of estimating two properties sim-

ultaneously is an interesting topic because the maximal

information can be gathered from measured tempera-

tures in only one experiment. Artyukhin [12] developed

an iterative algorithm to estimate the thermal conduc-

tivity and the heat capacity simultaneously but no nu-

merical simulation was tested. Huang and Ozisik [13]

used a direct integration approach to resolve the

problem but only the linear type of properties was

investigated. Huang and Yan [14] used a conjugate

gradient method to estimate both properties simul-

taneously and the simulated temperatures are
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measured at all discretized grids with a minor measure-

ment error. Sawaf et al. [15] used a Levenberg±

Marquardt method to estimate the linearly tempera-

ture dependent thermal conductivity and heat capacity

in a two-dimensional orthotropic medium.

An accurate estimation of two thermophysical prop-

erties is more di�cult than that of one thermophysical

property. For example, Huang and Yan [14] used

eleven sensors to estimate two properties simul-

taneously while Huang et al. [10] used only two sensors

to estimate one property. In the ®rst study, a maxi-

mum measurement error 0.1% induces a 4.101% and

1.026% average relative errors in the thermal conduc-

tivity and the heat capacity, respectively, when two

properties are estimated simultaneously. In the second

study, a 2% average relative measurement error leads

to a 6% average relative error when the thermal con-

ductivity is estimated alone. From the results, it shows

that the estimation of two properties needs so many

sensors that the experiment becomes di�cult and im-

practicable. As well, the estimation of two properties is

very sensitive to the measurement errors, which reduce

the accuracy of the estimation. Furthermore, the above

studies employ the nonlinear least-squares formulation

to determine the thermophysical properties. The

method takes the squares of the di�erence between the

measured temperature and the calculated temperature

from the medium, and that increases the nonlinearity

of the problem. In other words, the problem is formu-

lated in a more complicated form and makes the

problem more pronounced.

The purpose of this research is to propose an e�-

cient and stable method to estimate the temperature

dependent thermal conductivity and heat capacity sim-

ultaneously. In the proposed approach, the determi-

nation of the thermophysical properties includes two

phases: the process of direct analysis and the process

of inverse analysis. In the direct analysis process, the

thermophysical properties are assumed as the known

values and then directed to solve the temperature ®eld

of the heat conduction equation through a numerical

method. Solutions from the above process are inte-

grated with the available temperature measured at the

sensors' locations. Thus, a set of nonlinear equations is

formulated for the process of the inverse estimation. In

the inverse analysis process, an iterative method is

used to guide the exploring points systematically to

approach to the undetermined thermophysical proper-

ties. Then, the intermediate properties are substituted

for the unknown properties in the following analysis.

As such, several iterations are needed for obtaining the

undetermined thermophysical properties. In the present

research, the proposed method formulates the problem

from the di�erence between the calculated temperature

Nomenclature

C(T ) estimated heat capacity
J error function
k(T ) estimated thermal conductivity

km, Cn undetermined coe�cient
m-, n- upper bound of the indices of coe�cients
Nt number of the temporal steps

Nmeas number of the spatial measurements
T temperature
t temporal coordinate

Dt increment of temporal domain
Xm sensitivity function of T with respect to km
Xn sensitivity function of T with respect to Cn

x spatial coordinate

x0 vector of the initial guess

Greek symbols
FFF vector constructed from F
fm, jn basis function
F calculated temperature minus measured

temperature
Fc calculated temperature

Fmeas measured temperature

CCC sensitivity matrix
D increment of the search step
E value of the stopping criterion

s standard deviation of measurement error
l random number
k parameter to regularize the temperature

variable
t regularized temperature variable

Subscripts

i, j, u, v indices
meas measured value
m, n indices for undetermined coe�cients

l iterative step

Superscripts

- dimensional parameters

Ã exact estimated function
meas measured value
exact exact value
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and the measured one directly. Therefore, the inverse
formulation derived from the proposed method is sim-

pler than that from the nonlinear least-squares
method. Furthermore, only two thermocouples are
needed to be allocated at the boundaries, which is

much easier than that of the eleven-pointed measure-
ment in the past research.

2. The proposed method to estimate the thermal

conductivity and the heat capacity simultaneously

An iterative algorithm is used to simultaneously esti-
mate the temperature dependent thermal conductivity

and heat capacity of a homogenous medium using
two-pointed measurements in a transient heat conduc-
tion experiment. Some treatments are needed in the

process of solving the inverse problem. They are the
direct problem, the sensitivity problem, the operational
algorithm, and the stopping criterion. The direct

problem is used to determine the temperature distri-
bution and the sensitivity problem is used to ®nd the
search step in the inverse problem. The operational al-
gorithm is used to ful®ll the process of the inverse

analysis when the solutions of the direct problem and
the sensitivity problem are available. Finally, the stop-
ping criterion is shown to stop the iterative process.

The problem in this research is to estimate the ther-
mal conductivity and the heat capacity simultaneously
from the two-pointed measurements. The limitation of

the proposed method is that a function form is needed
to represent the undetermined thermophysical prop-
erty. Suppose that the thermophysical properties k(T )

and C(T ) are expressed as the following linear forms
corresponding to km and Cn in the problem domain:

k�T � �
X�m

m�1
kmfm�T � �1�

C�T � �
X�n

n�1
Cnjn�T � �2�

where fm (T ) and jn (T ) are any ®rst derivative con-
tinuous functions in the problem domain and km and
Cn are the undetermined coe�cients. m- and n- are inte-

gers.
Therefore, the inverse problem is to determine the

values of the coe�cients km and Cn.

2.1. The direct problem

Consider a slab with L
-
thickness and temperature

dependent thermal conductivity and heat capacity.
This slab originally has a uniformed temperature ®eld.
At a beginning time, t-=0, a heat ¯ux q-1 is applied to

the front surface at x-=0 and another heat ¯ux q-2 is
applied to the back surface at x-=L

-
. The temperature

®eld over the slab is T
-
0 when t

.
=0. A dimensionless

mathematical formation is written in the following for-
mulation:

@

@x

�
k�T �@T

@x

�
� C�T �@T

@ t
0 < x < 1, t > 0 �3�

T�x, 0� � 1 0RxR1 t � 0 �4�

ÿk�T �@T
@x
� q1 x � 0 t > 0 �5�

ÿk�T �@T
@x
� q2 x � 1 t > 0 �6�

where the following dimensionless quantities are
de®ned as:

x � �x

�L
T �

�T

�T0

k �
�k

�kr

C �
�C

�Cr

q �
�L �q

�kr
�T0

t �
�kr

�r �Cr

�t

�L
2

T
-
0, k

-
r, and �r �Cr refer to the nonzero reference tempera-

ture, the thermal conductivity, and the heat capacity
per unit volume, respectively. k(T ) and C(T ) are the
unknown temperature dependent thermal conductivity

and heat capacity. From the physical viewpoint, the
values of thermal conductivity and heat capacity must
be strongly positive, i.e. k(T ) > 0 and C(T ) > 0. If
k(T ) and C(T ) are estimated simultaneously, the

boundary condition and the measured method need to
satisfy the following two requirements to insure the
uniqueness of the solution. First, the heat ¯ux must be

known at one boundary at least and it must not be van-
ished. Second, two sensors are needed to measure the
temperature histories at least and they can be located at

the boundaries with the prescribed heat ¯ux [12].
The direct problem is used to generate the simulated

temperature when the values of k(T ) and C(T ) are
speci®ed. It is a nonlinear problem because the coe�-

cients in Eq. (3) are functions of temperature.
Therefore, a ®nite di�erence method is used to solve
the direct problem iteratively when the initial and

boundary conditions are given. Then, the results from
the direct analysis can be substituted into the sensi-
tivity equation and lead to a sensitivity analysis.

2.2. The sensitivity problem

In the proposed method, an iterative algorithm is
adopted to solve the inverse problem in that the sensi-
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tivity analysis is necessary to decide the search step in
each iteration. After Eqs. (1) and (2) are substituted

into Eqs. (3)±(6), the derivative @/@km and @/@Cn are
taken at both sides of equations. Then, we have

k�T �@
2Xm

@x 2
� @k�T �

@T

@T

@x

@Xm

@x
� @

2T

@x 2

@k�T �
@km

�
�
@T

@x

�2
@ 2k�T �
@T@km

� C�T �@Xm

@ t

0 < x < 1 t > 0

�7�

Xm�x, 0� � 0 0RxR1 t � 0 �8�

@k�T �
@km

@T

@x
� k�T �@Xm

@x
� 0 x � 0 t > 0 �9�

@k�T �
@km

@T

@x
� k�T �@Xm

@x
� 0 x � 1 t > 0 �10�

where

Xm � @T

@km

and

k�T �@
2Xn

@x 2
� @k�T �

@T

@T

@x

@Xn

@x
ÿ @C�T �

@Cn

@T

@ t

� C�T �@Xn

@ t

0 < x < 1 t > 0

�11�

Xn�x, 0� � 0 0RxR1 t � 0 �12�

k�T �@Xn

@x
� 0 x � 0 t > 0 �13�

k�T �@Xn

@x
� 0 x � 1 t > 0 �14�

where

Xn � @T

@Cn
:

Eqs. (7)±(14) describe the mathematical equations for

sensitivity coe�cient Xm and Xn that can be explicitly
found if k(T ), C(T ) and T are known. The equations
are the linear equations and the dependent variable Xm

and Xn are with respect to the independent variables x
and t. Therefore, the sensitive data can be determined
directly through a ®nite di�erence method.

2.3. A modi®ed Newton±Raphson method

The Newton±Raphson method [16] has been widely
adopted to solve a set of nonlinear equations. This
method is applicable to solve the nonlinear problem

when the number of the equations and the number of
the unknown variables are the same. In the inverse
problem, the number of equations is usually larger

than the number of variables; therefore a modi®ed ver-
sion of the Newton±Raphson method is necessary to
deal with the inverse problem.

In the present research, the proposed method formu-
lates the problem from the comparison between the
calculated temperature and the measured one directly.
Therefore, the calculated temperature Fc��{, j � and the

measured temperature Fmeas��{, j � at the õ--grid of the
spatial coordinate and at j-grid of the temporal coordi-
nate are needed to be evaluated ®rstly. Then, the esti-

mation of the unknown thermal conductivity and heat
capacity can be recast as the solution of a set of non-
linear equations:

F��{, j � � Fc��{, j � ÿ Fmeas��{, j � � 0: �15�
where j= 1, 2, 3, . . . , Nt and Nt is the number of grid

spacing along with the temporal coordinate.
This set of equations has m-+n- variables. As well,

the number of equations is the number of the temporal

measurements when one sensor is used. If the number
of independent equations is more than the number of
the variables, the set of equation can be solved through
the modi®ed method. This detail procedure can be

shown as follows:
Substitute the temporal index j from 1 to Nt into

Eq. (15),

FFF � �F��{, 1�, F��{, 2�F��{, 3�, . . . , F��{, Nt��T � fF̂ug �16�
where �Fu is the component of vector FFF:
The undetermined coe�cients are set as follows:

x � �k1, k2, . . . , k �m, C1, C2, . . . , C �n�T

� �x 1, x 2, x 3, x 4, . . . , x �m� �n�T � fxvg �17�

where xv is the component of vector x.
The derivative of F̂u with respect to xv is solved

through Eqs. (7)±(14) and it can be expressed as fol-

lows:

Cu, v � @ F̂u

@xv
�18�

The sensitivity matrix CCC can be de®ned as follows:

CCC � fCu, vg �19�
where u = 1, 2, 3, . . . , Nt and v = 1, 2, 3, . . . , m-+n-
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and Cu,v is the element of CCC at uth row and vth col-
umn.

The starting vector x0 can be shown in the following
vector:

x0 � �x 1,0, x 2,0, x 3,0, x 4,0, . . . , x �m� �n,0�T �20�
With the above derivations from Eqs (16) to (20), we
have the following equation:

xl�1 � xl � Dl �21�
Dl is a linear least-squares solution for a set of over-
determined linear equations and it can be derived as
follows:

CCC�xl�Dl � ÿFFF�xl� �22�

Dl � ÿ�CCCT�xl�CCC�xl�ÿ1CCCT�xl�FFF�xl� �23�
The above derivation is applied only at one-point
measurement. However, this method can be im-
plemented in the multi-sensors' measurement. Under
this condition, the number of the elements in Eq. (16)

is increased based on the formulation of Eq. (15). For
example, if p sensors are used to measure the Nt num-
ber of the temporal grids, the number of the elements

will be p � Nt in Eq. (16). Moreover, the fundamental
theorem concerning convergence of Eq. (23) is also
shown in appendix.

2.4. The stopping criterion

The iterative process (Eqs. (21)±(23)) is used to

determine the unknown vector x de®ned by Eq. (17).
The step size Dl goes from xl to xl+1 and it is deter-
mined from Eq. (23). Once Dl is calculated, the itera-
tive process to determine xl+1 is not stopped until the

following criterion is satis®ed

J�xl�1� < E �24�
where

J�xl�1� � Dt
Nmeas �Nt

XNmeas

i�1

XNt

j�1
�Fc��{, j �ÿFmeas��{, j ��2 �25�

and E is the value of stopping criterion and Nmeas is

the number of spatial measurements.
When measurement errors are not included, E is a

small speci®ed number. However, the error-free

measurement is di�cult to achieve and then the
measurement error is needed to be included in the nu-
merical simulation. In other words, the value of

J(xl+1) is not expected to vanish at the ®nal step of
iterations. Therefore, a discrepancy principle [1,6] is
used to evaluate the value of the stopping criterion.

The temperature residual is approximated by,

Fmeas��{, j � ÿ Fc��{, j �1s �26�
where s is the standard deviation of the measurements
and it is assumed to be a constant in a certain exper-

imental environment.
Substituting Eq. (26) into (25), the value of the stop-

ping criterion E has the following expression

E � Dts2 �27�
Then, the iterative process is terminated when Eq. (24)
is satis®ed by the value of E.

3. Computational algorithm

The iterative procedure for the proposed method
can be summarized as follows:
Given overall convergence tolerance E> 0 and the

initial guess x0. The value of xl is known at the lth
iteration.

Step 1. Solve the direct problem (Eqs. (3)±(6)), and

compute the calculated temperature Fc(õ
-, j )

Step 2. Integrate the calculated temperature Fc(õ
-, j )

with the measured temperature Fmeas(õ
-, j ) to con-

struct FFF:
Step 3. Calculate the sensitivity matrix CCC through
Eqs. (7)±(14).
Step 4. Knowing CCC and FFF, compute the step size

Dl from Eq. (23).
Step 5. Knowing Dl and xl, compute xl+1 from
Eq. (21).

Step 6. Terminate the process if the stopping cri-
terion (Eq. (24)) is satis®ed. Otherwise return to
step 1.

4. Results and discussions

In this section, a problem with the speci®c thermo-

physical functions is used as an example to demon-
strate the usage of the proposed method. In the
example problem, the stability and the accuracy of the
inverse estimation are testi®ed. Furthermore, the

results are also compared to the results of Huang and
Yan's approach [14]. The exact temperature and the
thermophysical properties used in the example are

selected so that these functions can satisfy Eqs. (3)±(6).
The accuracy of the proposed method is assessed by
comparing the estimated results with the preselected

thermophysical properties. Meanwhile, the measured
temperature is generated from the preselected exact
temperature in each problem and it is presumed to
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have measurement errors. In other words, the random
errors of measurement are added to the exact tempera-

ture. It can be shown in the following equation:

T meas
i, j � T exact

i, j � ls �28�

where T exact
i,j in Eq. (28) is the exact temperature.

Tmeas
i,j is the measured temperature. s is the standard

deviation of measurement errors. l is a random num-
ber.
The time domain is from 0 to 1.2 with 0.02 incre-

ment for the example problem. As well, the increment
of spatial coordinate is 0.1. Four kinds of random
noise level s=0.001, 0.005, 0.01 and 0.025 are
adopted. The values of l is calculated by the IMSL

subroutine DRNNOR [17] and chosen over the range
ÿ2.576 < l < 2.576, which represent the 99% con®-
dence bound for the temperature measurement. Two

thermocouples are allocated at the front and back sur-
faces of the medium; therefore, a total of 120 measure-
ments are used to estimate the unknown values. The

boundary heat ¯uxes are taken as q1=17 and q2=6
for the example problem. The inverse problem of esti-
mating the thermal conductivity and the heat capacity
have unique solution because the temperature is

measured at two boundaries with prescribed heat ¯ux.
In the example problem, the initial guesses of the
unknown variables are taken as one. Detailed descrip-

tions for the example are shown as follows.
Example problem: The thermal conductivity is a

sinusoidal-exponential form and the heat capacity is a

polynomial function. The estimated thermophysical
properties are assumed as follows:

k̂�T � � 1� 4:5� exp

�
T

80

�
� 2:5� sin

�
T

3

�
�29�

Ĉ�T � � 1:2� 0:02T� 0:00001T 2: �30�

For illustration, the estimated thermal conductivity
and heat capacity are expressed as a general formu-
lation. Both properties are approximated by a six-

ordered power series (m-=7 and n-=7). A parameter k
is used to regularize the independent variable to avoid
the unpredictable values of thermophysical properties.

k�t� � k1 � k2t� k3t2 � k4t3 � k5t4 � k6t5

� k7t6 �31�

C�t� � C1 � C2t� C3t2 � C4t3 � C5t4 � C6t5

� C7t6 �32�

where t=T/k. The value of k is set to twenty-®ve in
the problem.
The temperature distribution at x = 0.5 is chosen to

serve as the domain of the inverse solutions. Both

properties have excellent approximations when
measurement errors are free (see circular mark in Figs.
1 and 2). However, it is unrealistic because the error-

free measurement is hard to achieve. Therefore, the
measurement error is included in the numerical simu-
lation. The simulated temperatures are obtained

according to Eq. (28). Consequently, the inverse sol-
utions are also shown in Figs. 1±4.

Fig. 1. The estimated thermal conductivity k(T ) when s=0, 0.001, and 0.005.
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To further investigate the deviation of the estimated
results from the exact solution, the relative average

errors for the estimated properties are de®ned as fol-
lows:

1

nT

XnT

i�1

�����k�Ti � ÿ k̂�Ti �
k̂�Ti �

������ 100% �33�

1

nT

XnT

i�1

�����C�Ti � ÿ Ĉ�Ti �
Ĉ�Ti �

������ 100% �34�

where k(T ) and kÃ(T ) are denoted as the estimated and
exact values of thermal conductivity. C(T ) and CÃ(T )

are denoted as the estimated and exact values of the
heat capacity. nT is the number of the interpolation
points to calculate the relative average error.
To illustrate the characteristics of the present

approach, the average relative errors and the number
of iterations are shown in Table 1. When the value of
s is 0.001, the average relative errors of thermal con-

ductivity and heat capacity are 0.0262% and 0.035%
in the present approach and 1.502% and 0.706% in

Fig. 3. The estimated thermal conductivity k(T ) when s=0.01 and 0.025.

Fig. 2. The estimated heat capacity C(T ) when s=0, 0.001, and 0.005.
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Huang and Yan's results. Furthermore, when the value

of s is 0.005, the average relative errors of the esti-
mation are 0.137% and 0.168% in the present
approach and 4.101% and 1.026% in Huang and

Yan's approach. It is clear that the present technique
provides a more accurate and robust estimation. To
further test the practicality of the proposed method,
the value of the measurement error is raised to a realis-

tic level. The results are shown in Figs. 3 and 4 for the
thermal conductivity and the heat capacity when s is
0.01 and 0.025. When s=0.025, the temperature error

is within ÿ0.0644±0.0644 for a 99% con®dence bound,
which implies that a maximum temperature error is
0.1288. The value of the measurement temperature is

among 1.18±13.15 from the numerical simulation;
thus, the average relative measurement error is about
1.8%. By using 1.8% measurement error, the average

relative error is 0.705% in the thermal conductivity
estimation and 0.831% in the heat capacity estimation.

Furthermore, the means and variances of estimated

error (i.e. estimated results minus exact function) are
shown in Table 2. We compare the results of k(T ) and
C(T ) when s=0, 0.001, 0.005, 0.01, and 0.025. The

means and variances are small enough when measure-
ment errors are appeared. It indicates that the proposed
technique is suitable to estimate the thermal conductivity
and the heat capacity simultaneously when a realistic

error level is adopted. As well, the numerical values of
the estimated results show that the measurement errors
do not amplify the estimated errors. In other words, the

proposed method provides a practical and con®dent pre-
diction in estimating the thermal conductivity and the
heat capacity simultaneously. Furthermore, the number

of iterations to approach a satis®ed result is below seven
times, which shows that the speed of convergence of the
propose method is fast. From the results of the example

problem, it can be concluded that the proposed method
is accurate and stable to simultaneously estimate the

Fig. 4. The estimated heat capacity C(T ) when s=0.01 and 0.025.

Table 1

Convergent parameters for the example problem

Measurement error s Stopping criterion No. of iterations Average relative error

k(T ) (%)

Average relative error

C(T ) (%)

Present method [14] Present method [14]

0 2.30 � 10ÿ10 7 0.012 0.510 0.012 0.690

0.001 2.00 � 10ÿ8 7 0.026 1.502 0.035 0.706

0.005 5.00 � 10ÿ7 6 0.137 4.101 0.168 1.026

0.01 2.00 � 10ÿ6 6 0.280 0.666

0.025 1.25 � 10ÿ5 6 0.705 0.831
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thermal conductivity and the heat capacity in the inverse
heat conduction problem.

5. Conclusion

An approach has been introduced to determine the

thermal conductivity and the heat capacity simul-
taneously in the inverse heat conduction problem. The
proposed method is constructed from a set of non-
linear equations from the measured temperatures and

the calculated temperatures. An example has been il-
lustrated based on the proposed method. Only two
thermocouples are needed to measure the temperature

at both sides of boundaries. Meanwhile, the speed of
convergence of the proposed method is considerably
fast. From the results, the average relative errors of

thermal conductivity and heat capacity are consider-
ably small for the example problem whether measure-
ment error is included or excluded. The close

agreement between the exact results and estimated
results con®rms that the proposed method is accurate
and stable for the determination of the thermal con-
ductivity and the heat capacity. The proposed method

is applicable to the other kinds of inverse problems
such as boundary estimation, initial estimation and
source strength estimation in the one- or multi-dimen-

sional inverse conduction problems.

Appendix

The following process shows the fundamental theo-

rem concerning convergence, which is similar to the
process in Ref. [16]. First, we have the result

FFF�aaa� � 0

when det�CCCT�xl�CCC�xl�� 6� 0 and if the components of
CCC�x� are continuous in a neighborhood of a point a
then

lim
l41

xl � aaa if x0 is near a:

Therefore, Eq. (23) can be formed as follows:

Dl � �CCCT�xl�CCC�xl��ÿ1CCCT�xl��FFF�aaa� ÿ FFF�xl��:
By the mean-value theorem, we have

F̂u�xl� ÿ F̂u�aaa� �
X�m� �n

v�1
Cu, v�aaa� xul�xl ÿ aaa���xv, l ÿ av�

where 0 < xul < 1 and F̂u�aaa� � 0:
De®ne a matrix OOO with the components in the uth

row:

�Cu, 1�aaa� xul�xl ÿ aaa��, . . . , Cn, �m� �n�aaa� xul�xl ÿ aaa���:
Then we have the following equation

xl�1 ÿ aaa � xl ÿ aaa� Dl

� �CCCT�xl�CCC�xl��ÿ1CCCT�xl��CCC�xl� ÿ OOO��xl ÿ aaa�:

Since the components in the matrix CCC�xl� ÿ OOO are
shown in the following form

Cu, v�xl� ÿCu, v�aaa� xul�xl ÿ a��
and the form can be kept uniformly small if the start-

ing vector x0 lies in an initially chosen region R

describable as vxvÿavv R h.
Therefore, the property of the convergence in l-iter-

ation is vxv,lÿavv R hm l, where 0 < m < 1 and
1 R v R m-+n-.
Thus the sequence {xl} converges to aa.
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